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MULTI-MODAL SENSORY FUSION WITH APPLICATION TO AUDIO-VISUAL SPEECH

RECOGNITION

Stephen M. Chu and Thomas S. Huang

Beckman Institute and Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

ABSTRACT (VOT) is an important cue to the voicing feature in stop conso-

nants. This information can be conveyed bimodally by the inter-

In this work we consider the bimodal fusion problem in audio- val between seeing the stop release and hearing the vocal cord

visual speech recognition. A novel sensory fusion architecture vibration. Therefore, a successful fusion scheme should not only

based on the coupled hidden Markov models (CHMMs) is pre- be tolerant to asynchrony between the audio and visual cues, but

sented. CHMMs are directed graphical models of stochastic also be apt to capture and exploit this bimodal feature.

processes and are a special type of dynamic Bayesian networks.
The proposed fusion architecture allows us to address the statis- 2. SENSORY FUSION USING CHMMS

tical modeling and the fusion of audio-visual speech in a unified

framework. Furthermore, the architecture is capable of capturing It's a fundamental problem to model stochastic processes that

the asynchronous and temporal inter-modal dependencies be- have structure in time. A number of frameworks have been pro-
tween the two information channels. We describe a model trans- posed to formulate problems of this kind. Among them is the

formation strategy to facilitate inference and learning in hidden Markov model (HMM), which has found great success in

CHMMs. Results from audio-visual speech recognition experi- the field of ASR. In recent years, a more general framework, the

ments confirmed the superior capability of the proposed fusion Dynamic Bayesian Networks (DBNs), has emerged as a power-

architecture. ful and flexible tool to model complex stochastic processes [3].

1. INTRODUCTION

Incorporating visual information into automatic speech recogni-
tion (ASR) has been demonstrated as an effective approach to

improve the performance and robustness over the audio-only I= t= 2 r= 3 t= T

systems, and has received much attention in recent years [7]. Figure 1. DBN representation of an HMM

One of the most challenging issues in bimodal ASR is how to
fuse the audio (i.e. acoustic speech signal) and the visual (i.e. lip The DBNs generalize the hidden Markov models by representing
motion) modalities. TeD~ eeaietehde akvmdl yrpeetn

mothen) fofda udtio. athe hidden states as state variables, and allow the states to haveThe fusion of audio and visual speech is an instance of the c m l x i t r e e d n i s n e h B s f a e o k hgeneral sensory fusion problem. The sensory fusion problem complex interdependencies. Under the DBNs framework, the
geneal ensry usio prble. Te snsor fuionprolem conventional HMM is just a special case with only one state

arises in the situation when multiple channels carry complemen- v enina HmM is ju s ase ca wtonly one state

tary information about different components of a system. In the vale in tie slice. Dbas arenc depice Aphi-
case of audio-visual speech, the two modalities manifest two cally in the form of probabilistic inference graphs. An HMM
aspects of the same underlying speech production process. From can be represented in this form by rolling out the state machine
an observer's view, the audio channel and the visual channel in time, as shown in Figure 1. Under this representation, each

vertical slice represents a time step. The circular node in eachrepresent two interacting stochastic processes. We seek areprsen tw ineratin stchasic rocsse. W sek a slice is the multinomial state variable, and the square node in
framework that can model the two individual processes as well slice i s the om state variable, The surecnod in
as their dynamic interactions, each slice represents the observation variable. The directed links

One interesting aspect of audio-visual speech is the inherent signify conditional dependence between nodes.One nteestng spet o auio-vsua spechis he nheentIt is possible to just use HMM to carry out the modeling
asynchrony between the audio and visual channels. Most early It is ossible torju t s o carry O e mo

integration approaches to the fusion problem assume tight syn- and fi of multiple or source. lhs ca be aco

chrony between the two. However, studies have shown that plished by attaching multiple observation variables to the state

human perception of bimodal speech does not require rigid syn- variable, and each observation variable corresponds to one of the
chroizaionof te to mdalties161 Futherore huans information sources. Figure 2 illustrates the fusion of audio andchronization of the tw o m odalities [6]. Furtherm ore, hum ans vi u l nf r a on s ng t s sc e . B c u e b th h n e s

appear to use the audio-visual asynchronies as multimodal fea- sual io o sing this scheme. B eu ebt annesshare the single state variable, this approach in effect assumes
tures. For example, it is well known that the voice onset time

the two information sources always evolves in Iockstep. There-
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------------------------------------------------..ables can be either discrete or continuous. It is possible with this
acoustc:_ framework that one of the state variable is continuous and the

------ ----------. ------. ----. -----. --------. ---- other one is discrete.
In the context of audio-visual speech fusion, the audio and

visual channels are associated with the two state variables re-
---- ----------- --------- -- - - - spectively through the observable nodes. Inter-channel asyn-

visua -• chrony is allowed. The overall dynamics of the audio-visual
chan~nel4'

speech is determined by both modalities.
1= I t = 2 t= 3 tI T In general, the time complexity of exact inference in DBNs

Figure 2. Audio-visual fusion using HMM is exponential in the number of state variables per time slice.

For systems with large number of state variables, exact inference

fore, it is not able to model asynchronies between the two chan- quickly becomes computationally intractable. Consequently,

nels. much attention in the literature has been paid to approximation

An interesting instance of the DBNs is the so-called Cou- methods that aim to solve the general problem. Existing ap-

pled hidden Markov models (CHMMs). The name CHMMs proaches include the variational methods 14] and the sampling

comes from the fact that these networks can be viewed as paral- methods [5]. However, these methods usually exhibit nice com-

lel rolled-out HMM chains coupled through cross-time and putational properties in an asymptotic sense. When the number

cross-chain conditional probabilities. In the perspective of of states is very small, the computational overhead embedded in

DBNs, an n-chain CHMM has n hidden nodes in a time slice, the approximation method is often large enough to offset the

each connected to itself and its nearest neighbors in the next time theoretical reduction in time complexity. In this situation, the

slice. For the purpose of audio-visual speech modeling, we con- approximation becomes superfluous and exact inference be-

sidered the case of n=2, or the 2-chain CHMMs. Figure 3 shows comes more desirable. In the following section, we describe a

the inference graph of a 2-chain CHMM. model transformation strategy that facilitates inference and learn-

ing in CHMMs.---- --- --- --- --- ---- ------ --- ---

channel: 3. CIIMNI• TRANSFORMATION

. ._6 The state of a 2-chain CHMM is jointly determined by the two
state variables in the parallel chains. If the two state variables

can take Q, and Q2 discrete values respectively, then the
CHMM in effect has Q, xQ9 possible states. The same state

- -- -space can also be represented by a conventional HMM that has
visul: Q, xQ 2 hidden states. Moreover, in CHMM, the output distri-

channel:
.. ... ... :.bution of a joint state can be obtained by taking the product of

t= I t=2 t=3 t T the two output densities of the two individual state variables;

Figure 3. Audio-visual fusion using CHMM Similarly, in a 2-stream HMM, the output distribution of a state
is the product of the two stream-dependent densities. Hence, it

There are two state variables in the graph. The state of the sys- is also possible to represent the output configurations of a 2-

tem at certain time slice is jointly determined by the states of chain CHMM with a 2-stream HMM that has an equivalent state

these two multinomial variables. More importantly, the state of space. However, the observable nodes of a Q, x Q2 CHMM are

each state variable is dependent on both of its two parents in the fully specified by a table containing Q, + Q, entries. On the

previous time slice. This configuration essentially permits un- other hand, an unconstrained 2-stream HMM with Q, x Q2 hid-

synchronized progression of the two chains, while encouraging den states has 2xQ, xQ 2 distinct output densities. This differ-

the two sub-processes to assert temporal influence on each ence arises because in the CHMM an output node is only de-

other's states. Note that the Markov property is not jettisoned by pendent on its single parent, while in the state-equivalent HMM

introducing the additional state variable and the directed links, the output is effectively conditioned on both state variables in

Given the current state of the system, the future is conditionally the original CHMM. Fortunately, this discrepancy can be read-

independent of the past. Furthermore, given its two parents, a ily resolved through tying the appropriate output densities in the

state variable is also conditionally independent of the other state 2-stream HMM according to the mapping from CHMM states to

variable. HMM states. This state mapping and parameter tying procedure

In addition to the two state variables, there are two observa- is easy to visualize graphically.

tion variables in each time slice. Each observation variable is a Figure 4 illustrates the state-machine diagram of 2-stream

private child of one of the state variables. The observation vari- HMM obtained by transforming a 2-chain CHMM with Q, = 3
and Q, = 2 . The state space of the original CHMM is repre-
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4. AUDIO-VISUAL ASR EXPERIMENTS

channel

f t The experiments carry two objectives. The first is to evaluate
the improvement in noise robustness brought by the bimodal

1. . . 3.approach to ASR. The second is to compare the performance of

FAl A the proposed fusion architecture with other fusion techniques.I 1recognizer as the baseline system. The recognizer was trainedVi V V2 'I To fulfill the first objective, we built an acoustic speech

using clean speech. Noisy condition of a particular SNR level
was simulated by adding white Gaussian noise to the clean

visual speech samples. The same acoustic feature sets were also usedchanne; jii'= in the audio channel of the bimodal system. However, it is as-

sumed that visual channel is not affected by any additional noise
Figure 4. Transform CHMM to HMM through state-space during testing. A visual-only recognizer was built and used as a
mapping and parameter tying benchmark. To achieve the second objective, we implemented a

common form of the early integration approach, i.e. fusion by
sented by the 6 hidden states in the HMM. This mapping is concatenating the audio and visual feature vectors. The systems
explicitly depicted in the diagram. E.g., the state 3 in the HMM were developed using HTK.
is equivalent to the state {q, = 2, q 2 = 1} in the CHMM. The Evaluation of the bimodal speech recognition system was
output densities of the HMM are tied according to the mapping. performed on an audio-visual speech dataset [1 collected by
In the figure above, the observation nodes with the same color Chen et al. at the Carnegie Mellon University. The vocabulary
shade are tied. For example, the output densities modeling the consists of 78 words commonly used in scheduling applications.
lower stream in state 2, 4, and 6 are tied, because they all corre- The visual features were derived from the lip-tracking data pro-
spond to the entry p(o, I q2 = 2) in the CPT of the CHMM. vided with the bimodal speech dataset. The primary visual fea-

The allowed state transition in the HMM is also derived tures considered in the experiments are composed of h,, h2 ,
from the state space mapping. In this example, it is assumed that which measure the vertical openings of the upper and lower lips,
the conditional probabilities concerning the two state variables and the distance between the two mouth-corners, w. Delta fea-
in the CHMM satisfy the following condition. tures were also included, thus the actual visual feature vector is

six-dimensional. The acoustic speech was processed using a
25ms Hamming window, with the frame period set at I Oms. For

This condition essentially enforces the left-to-right no-skip pol- each frame, 12 MFCC coefficients were calculated from the
icy in the sense of conventional HMM for the two state variables result offilterbank analysis using 26 channels. Delta coefficients
in the CHMM, which is commonly used in audio-only speech were also computed and then appended to the static features
recognizers. For example, a possible state path in the CHMM resulting in a 24-dumentional acoustic feature vector.
could be {q, = 1, q2 = 1) ---> {q = 2, q 2 = 1) -> {ql = 3, q2 = 2} , We constructed the acoustic and the audio-visual speech
this is equivalent to the allowed state path 1 -- 3 --> 6 in the models at the word level. The audio-only system is based on
HMM. HMMs with nine states, left-to-right topology, and no skips.

Other meaningful model configurations can be obtained The HMMs used in the visual-only system have a similar topol-
through manipulating the allowed state transitions. For instance, ogy, but with only five states. HMM configuration identical to
it might be reasonable to model the dynamics of the lip motion the audio-only system is used in the early integration bimodal
using an ergodic state variable, i.e., no restriction on the possible system. The CHMM-based bimodal system uses five states to
state transitions for this variable, model the audio channel and three states for the visual channel.

It is worthy noting that the 2-stream HMM approach to au- The allowed state transitions follow the policy specified in equa-
dio-visual fusion as shown in Figure 2 can be considered as a tion (1). Recognition was performed in the connected-word
special case of the CHMM-based fusion architecture. In that mode without the help of any grammatical constrains. A cross-
case, the number of the audio states must be equal to the number validation scheme was used in the evaluations due to the limited
visual states, and the two state variables always progress in lock amount of data. Specifically, the recognizers were trained on a
step, i.e. Q, = Q2 , and q, = q2 for all t. The CHMM-based subset containing 90% of the available data and tested on the
fusion architecture permits a much richer space for modeling remaining 10%; this process was repeated until all data had been
interactions between the two modalities, covered in testing. The results are summarized in Table 1.

The model transformation strategy described is fairly gen- In the recognition results, it is evident that both of the bi-
eral and can be implemented on any HMM-based ASR platforms modal systems demonstrate improved noise robustness in com-
that support multiple observation streams and parameter tying. parison to the audio-only system. However, at 10dB, the gain in

robustness achieved by the early integration system is very lim-
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U---superimposed with the speech waveform. The upper one is theS -. alignment obtained using audio-visual CHMMs; the lower one
,V shows the alignment obtained using acoustic only HMMs. The

,L . . . .. .three subplots on the top display the static visual features used in
the bimodal system. All five plots are time-aligned so that the

S1,-% I. - correspondence among them can be visualized.
J _ i • ]From the plot, we see that the audio-only recognizer almost

,. always give the incorrect end-of-word boundary at this noise
£ ££ olevel. In contrast, the bimodal system was able to precisely de-

termine the end boundaries in 6 out of 7 cases. It is interesting
, , f• ..-J, ". to observe that the bimodal recognizer consistently introduced a

_,j - lead-time before the audible starting point of a word. This ob-
. , , servation is consistent with the finding from human speech

o5 • , tperception, that the visual speech usually leads the visual speech
by a varying time window. The duration of the visual lead-inL Ii shown in Figure 5 ranges from about 40ms to 150ms.

5. CONCLUSIONS
o:I0£ We have described a novel sensory fusion architecture based on

the CHMMs. A model transformation strategy that maps the
state space of a CHMM onto the state space of a classic HMM is
proposed to carry out inference and learning. Bimodal speech

Figure 5. Forced alignment using audio only H-MM and recognition experiments demonstrate that the CHMM-based

audio-visual CHMM fusion scheme can utilize the information in the visual channel
effectively in noisy conditions.

ited. On the other hand, the CHMM approach managed to give a
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